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Symmetry-adapted states for strongly coupled T (8 t 
Jahn-Teller systems 

J L Dunn 
Physics Department, The University, Nottingham NG7 2RD, UK 

Received 23 March 1989 

Abstract. Projection operator techniques are used to construct a complete set of symmetry- 
adapted states for strongly coupled T €4 t Jahn-Teller (JT) systems from the exact infinite 
coupling results. A Gram-Schmidt orthogonalisation procedure is then used to extend the 
validity of most of the states to the weak-coupling limit. The ordering of the states and their 
energies are shown to compare favourably with those of existing numerical calculations. In 
addition, the states obtained provide an ideal basis for the analytical calculation of second- 
order JT reduction factors. 

1. Introduction 

One of the best ways of observing the Jahn-Teller (JT) effect in solids is via an analysis 
of the electronic parameters appearing in effective Hamiltonians (Ham 1965, 1972, 
O’Brien 1969). First-order JT effects reduce the size of some of the terms, whilst second- 
order effects introduce new terms. If the coupling is strong, this may mean that second- 
order terms dominate in the Hamiltonians (Ham 1965, Bates and Dunn 1989). Hence it 
is important to be able to calculate the size of both first- and second-order ‘reduction’ 
factors in a reasonably accurate manner from basic JT theories. Unfortunately, second- 
order reduction factors are generally not well known, as their calculation involves 
coupling to an infinite set of excited states, which are not known in general. The aim of 
this paper is to obtain analytical expressions for the excited states of T €3 t JT systems, 
which can be used as a basis for the calculation of second-order reduction factors for 
these systems. 

The eigenstates of very strongly coupled T €3 t JT systems are known to approximate 
to those of harmonic oscillators centred on four potential energy wells with minima 
along trigonal axes in phonon coordinate (Q) space. As these states do not have the 
correct cubic symmetry of the surroundings, they are not good eigenstates of the system 
as a whole for finite couplings. However, linear combinations of the infinite coupling 
states which have the desired cubic symmetry are good eigenstates in this region. 
Unfortunately, cubic combinations of the infinite coupling states are only known for the 
lowest energy levels (Ham 1965, Shultz and Silbey 1974, Dunn 1988). In this paper, 
general expressions for all cubic excited states will be obtained using projection operator 
techniques. 

In very weak coupling, the states of T @ t JT systems ae equivalent to those of 
harmonic oscillators centred on the origin in Q-space. It is found that most of the 
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symmetry-adapted strong-coupling states have this limiting behaviour. It can thus be 
assumed that, although they are strictly valid only for strong coupling, they are reason- 
able eigenstates over the full coupling range. Unfortunately, a proportion of the states 
obtained do not have the correct limiting behaviour. However, it will be shown that 
some of these of these states can be modified to give the correct behaviour in this limit 
using standard Gram-Schmidt orthogonalisation procedures. 

The results presented here are for TI ions in Td symmetry. Corresponding results for 
T2 ions and for Oh symmetry can be obtained by appropriate interchanges of the 
symmetry labels. 

2. Background theory 

2.1. Infinite coupling 

The basic JT Hamiltonian for a TI ion in a tetrahedral cluster coupled linearly to the tZ- 
type modes of vibration Q4,  Q5 and Q 6  is 

where V,  is the t2-type ion-lattice coupling constant, P, is the momentum conjugate to 
Q,, and p is the mass and wT the frequency of each of the modes. The z, are orbital 
operators, which can be defined in terms of 1 = 1 by r 4  = -(lylz + l,l,) etc, where the 
orbital basis states are the tetragonal axes 12) = IO), lx) = - (l/t’2)( 11) - 1 - 1)) and 1 y )  = 
(i /d2)( 11) + 1 - 1)). The excitation labelled ‘4’ transforms as ‘yz’ with respect to these 
axes, the excitation ‘5’ as ‘zx’ and the excitation ‘6’ as ‘ xy ’ .  

In standard JT theories (Ham 1965, Opik and Pryce 1957, Bersuker and Polinger 
1989 and references therein), X is diagonalised with the Q , being treated as dynamical 
variables, and eigenstates found with energies E which are functions of the Q,. Values 
of the Q, are then found which minimise E .  Four sets of solutions are obtained, each of 
which defines an energy well. States appropriate to the system in infinite coupling are 
products of the orbital states associated with each well and harmonic oscillator-type 
states centred on the origins of the wells. A full analysis of the adiabatic potential energy 
surface shows that the wells are not isotropic in Q-space. If this anisotropy is taken into 
account using perturbation theory, it is found that the vibronic states are more exactly 
described by one A-type harmonic oscillator of frequeny uT and two E-type harmonic 
oscillators of frequency w +  = muT (Moffitt and Thorson 1957). 

The present author was recently involved with the development of an alternative 
treatment for strongly-coupled orbital triplet JTsystems (Bates et al1987, Dunn 1988). In 
this method, the Q, and P, are treated as phonon operators via the standard relationships 

where b,? and b, create and destroy excitations of symmetryj respectively. The unitary 
transformation 

is then applied to X, where the aj are free parameters. Values of the ai are then found 
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which minimise the energy of the transformed Hamiltonian. This again produces four 
wells (which will be labelled by the index k = 1 to 4), at positions -a$ in Q-space, which 
are directly analagous to those obtained using the standard procedures. However, 
eigenstates of X are now obtained by multiplying the oribtal states associated with each 
well by the transormation U = Uk for that well. This produces states which are naturally 
vibronic, and, due to their quantum-mechanical nature, are easier to manipulate in 
subsequent mathematical calculations than those obtained using standard theories. 

Perturbation theory can again be used to account for anisotropy in the wells. In this 
case, the infinite coupling states can be shown to consist of oscillations from one A-type 
harmonic oscillator of frequency wT and two E-type oscillators of frequency o+ = 
(1 - Q - h . . .)wT, where successive orders of perturbation theory generate successive 
terms in the series expansion of (1 - 4)lI2. Consequently, the result of this calculation 
of w + tends towards the value of a m T  obtained by the dynamical variable approaches 
in infinite orders of perturbation theory (Dunn and Bates 1989). This result is essentially 
the same as that of Schultz and Silbey (1974). 

2.1.1. Results of the unitary transformation method. The isotropic states associated with 
each of the wells k ,  as obtained using the unitary transformation approach, can be 
written in the form 

IXf)'; 4'5"6") = U k l X F ) ;  4'5"6") (2.4) 
where 4 denotes the presence of I '4'-type excitations etc and 

with 

For simplicity, the notation X6') = a,  XL2) = b, XL3j = c and XL4) = d will also be used 
to label the wells. The energies of these states are 

E = --EJT + ( I  + m + n + j )hw ,  (2.8) 
where EJT = 4K+/3h@T is the Jahn-Teller energy. 

This form of states uses tetragonal coordinates to express both the orbital and 
vibrational components of the states. However, when anisotropy is included, it is found 
that the effective oscillators vibrate along trigonal axes of the cluster. It is thus more 
natural to express the states in terms of trigonal coordinates for anisotropic calculations. 

The A-type oscillator for well k vibrates along the axis 
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and the E-type oscillators along the two axes 

(2.10) 

Excitations 4 k ,  5 k  and 6k are thus defined, which transform as Z@), Y@) and X ( k )  
respectively. The vibronic states in trigonal coordinates are then 

/ Z ( k ) ' ;  4;5?6;) = U k I Z ( k ) ;  4;5?6;) (2.11) 

with 

(2.12) 

where bik)+ creates an excitation of 4k symmetry. Anisotropic effects can be added to 
these states using standard perturation theory (Dunn and Bates 1989). 

Anisotropy can be added to the tetragonal states using degenerate perturbation 
theory. This results in new zeroth-order states which are effectively trigonal states 
written in tetragonal coordinates. The two method ultimately produce the same results, 
but the calculation in tetragonal coordinates is unnecessaily complicated. However, it 
is difficult to use the trigonal states to calculate overlap functions and matrix elements 
between different wells, as the states are expressed in terms of different axes for each 
well. As the calculations presented here involve many such evaluations, anisotropy will 
be neglected and the tetragonal states used for the majority of calculations. 

2.2. Finite coupling 

In finite coupling, the vibronic states associated with the four wells are not good eigen- 
states of the system as a whole, as they are not orthognal to each other and do not reflect 
the true cubic symmetry of the system. However, it is known that linear combinations 
of the vibronic ground states which are both orthogonal and cubic are good eigenstates 
for these systems (e.g. Ham 1965, Shultz and Silbey 1974, Dunn 1988). It follows that 
cubic combinations of the excited vibronic states will also be good eigenstates, provided 
that the approximation of assuming them to be localised in wells is still a good one. This 
will be true for states with energies less than the height of the barriers separating the 
wells. 

In Dunn (1988), projection operator techniques derived from the theory of Landau 
and Lifshitz (1963) were used to construct cubic ground states from the vibronic ground 
states associated with the wells. In the following section, the same techniques will be 
used to obtain a full set of cubic excited states from the excited states associated with the 
wells. 

3. Projection operators 

It is possible to generate a set of symmetry adapted states from a set of non-symmetrised 
states cp by operating on them with appropriate projection operators. A good account 
of the theory of projection operators is given in Bradley and Cracknell (1972), for 
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example, so only a brief account of the results applicable to cubic symmetry will be given 
here. 

It is required to construct symmetry-adapted states which transform as one of the 
irreducible representations ri (i = 1 to 5) of the group T, (rl = Al,  r2 = A2, r3 = E, 
r4 = T1 a n d r 5  = T2). Foreachof these representations, a set of (normalised) projection 
operators p 2) can be defined to be 

where g is the order of the group (= 24 in this case), d, is the dimension of the rep- 
resentation P, R is an element of the group T, and D'(R) is the matrix representative of 
R (which, by definition, is independent of the basis chosen). The elements R are the 
operations E, 3C2, 6JC4, 6JC2 and 8C3. 

It can be shown that if cp is a function of undefined symmetry acting in a space V of 
group operators, then the functions pji)q ( t  = 1 to d,)  are either identically equal to zero 
or form a basis q ; for the representation r'. This means that it is possible to obtain a 
complete basis set of symmetry-adapted functions for each representation r' by applying 
p i )  to the functions cp until the required number of basis states has been obtained. In 
this case, cp can be chosen to be either the set of 'tetragonal' states 1x6')'; 4'5"6") or the 
set of 'trigonal' states lZ(k) ' ;  4i5T6;). 

The projection operators p #  for T, symmetry are shown in the lower part of table 
1. It is not necessary to use the projection operators pi;) (s = 2 to dJ, as long as sufficient 
states cp are used, so they are not presented here. Note that table 1 is not a character 
table; the projection operator for A, has negative entries for 6JC4 and 6JC2, and that for 
A2 has positive entries. 

Projection operators for Oh symmetry have the Td operations 6JC4 and 6JC2 replaced 
by -6C4 and -6C2, as the signs of the elements DL(R)ts are all reversed. However, the 
effect of 6C4 and 6C2 on a vector (x, y ,  z )  is the inverse of that of 6JC4 and 6JC2, so the 
projection operators are effectively the same for both symmetries. However, care must 
be taken in choosing the correct group-theoretical labels for the resultant states (Bates 
et a1 1988). 

The top part of table 1 shows the effect of each of the operations R on a basis vector 
(x, y ,  z )  for Td symmetry. This can be used to calculate the effects of the operations R 
on the states q ,  as illustrated by the following example: The effect of 6JC$') on the 
tetragonal orbital state I X f ) )  is 

or, in the alternative notation, 

JC$l) I a) = 1 c) 

6JC$1)/c) = la) 

6JC$1) 1 b) = Id) 

6JC$1)Id) = /b) 
(3.74 

The effect on the tetragonal vibrational state 14'5"6") can be calculated remembering 
that '4' transforms as 'yz' etc. It thus follows that 

6JC$1)14'5"6") = )5'(-4)"(-6)") = (-1)"+"14"5'6"). (3.3) 
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N i z A  - - - -  3 - 0 0 - 0  
I 1  I I  I I 

N Y A  3 - 3 1  0 - 0 0 - 3  
I 1  1 1  

N Y h  A - - -  0 - 0 0 - 0  
I 1  I 1  I 

N Y A  - 3 - 1  0 - 3 0 3 0  
I I  

A N *  - 1 - 3  0 0 - 3 0 3  
I I  I I 

x , N Y  - A - +  3 0 3 3 0 -  
1 1  I I I 

A N Y  - 3 3 -  0 0 3 0 0 -  
I 1  I I 

A N W  - A - -  0 3 - 0 0 -  
I 

i z N h  3 3 - 3  1 0 0 3 0 -  
I l l  I 

Y N h  1 - 3 3  - 0 3 0 0 1  
I 1  I 

N h i z  - - - -  0 0 - 0 - 0  
I l l  I 

N h h  - - - -  3 0 3 0 3 0  
I 1  I l l  I 

A Y N  - - N c  0 - 0 - 0 0  
I 

h Y N  - + N D  0 - 0 - 0 0  
I 1  I 1 1  

Y N h  3 - e -  3 3 0 0 0 -  
I I 1  I 1 

iz N A - - - - 1  3 0 3 0 3 -  
I 1  I 1  I 

? h e  1 - 3 1  0 3 3 3 - 3  
1 ' I  

N h Y  ---i 3 0 r i c - 0  
I l l  I 1  I I  

A W N  - + r i a  0 - 0 - 0 0  
I I I  

A Y N  - - N O  0 - 0 - 0 2  
I 1  I I 

Y h N  - - m 0  - 0 0 - 0 0  
I 1  I 

Z A N  - - N O  - 3 0 3 0 0  
I 1  I 

Y A N  - - N O  - 3 0 - 0 0  
I I  I 

* A N  - 3 N C  - 3 0 r c 0 0  

,-. ~~z.~=-~ 
Q Q Q Q  Q Q Q Q Q Q  

Z A N  L " L i  e i 
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It also follows that 6JC$1) U ,  = U ,  etc. Thus 

6JC$1)(a'; 4'5"6") = (-l)m+nlc' ;  4"5'6") 

7867 

(3.4) 
etc. The required cubic states are generated by evaluating the effect of each operation 
R and combining the results into the full projection operators. 

4. Symmetry-adapted states 

4.1. States in tetragonal coordinates 

It is found convenient to write the cubic states derived using tetragonal coordinates in 
terms of the functional states 

ITx(E, m, n)) = I C '  + ( - l )m+nd '  - ( - l )n+lar  - (-l)'+"b'; 4'5"6") 

(Ty(1, m, n ) )  = Ib' + ( - l )n+ldr  - (-l)'+"c' - ( - l )m+na ' ;  4'5"6") 

ITz(1, m, n ) )  = / a '  + (-l)l+"d' - (-1)"'"b' - (-1)"'lc'; 4'5"6") 

and 

IE(1, m, n ) )  = la'+ ( - l ) m f n b r  + (-l)"+'c' + (-1)""d'; 4'5"6") (4.1) 
(which are not normalised), It should be noted that the orbital part of the state 
ITx(l, m, n ) )  transforms with x-type symmetry, but that the total state may transform 
with either x ,  y or z-type symmetry, depending upon the values of I ,  m and n. 

The resulting (unnormalised) states are shown in table 2. They have been divided 
into 19 sets of states qi(l ,  m, n) ,  with the symmetry properites shown. The restrictions 
on the indices I ,  m and n are those necessary to both restrict the states to the symmetries 
indicated and ensure that each state is defined once only. For example, the states 
rp4(1, m ,  n)  have TI symmetry for all 1, m and n ,  but q4(17 m, n)  = q4(1, n ,  m) and 
q4(l, m ,  m)  = rpl(l, m, m) ,  so the restriction m > n is introduced for the q 4  to ensure 
uniqueness. A proof that the correct number of states has been obtained is given in 
Appendix 1. The states q , ( O ,  0,O) for i = 1 , 2 ,  3 and 18 correspond to the well known 
results for the cubic ground states obtained previously. 

4.1.1. Normalisation factors. The states q j  are not normalised. The corresponding 
normalised states will be defined to be vi, where 

~ i ( l 7  m, n)  = Ni(17 m, n)qi(l7 m, n). (4.2) 
Expressions for the normalisation factors Ni(l ,  m, n)  can be obtained by evaluating the 
overlaps between various pairs of states, such as ITx(1, m, n ) )  and /Tx(p, q ,  r ) ) .  This in 
turn requires overlaps such as 

(Xbk)'; 4'5"6"/Xv)'; 4P546') = (Xbk)iXg))(415m6nIUkf U,14P546') (4.3) 

to be evaluated. The phonon part of this matrix element can be evaluated by expanding 
the exponentials in U,+ U, as series in bi and b: (i = 4, 5 and 6), and using the usual 
properties of bi and b: . It is found that all of the required overlaps can then be expressed 
in terms of the functions 

S(a, b ,  c, d )  = - BXc+d-a-b F(a,  d )  (4.4) 
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where X = %KT/hwT and F(m, n)  is the function 

I o  
(Note: ~ ( n ,  m) = ( -P)n-mF(m,  n).)  

(Tx(1, m,  n)lTx(p, 4, r ) )  = 46,16,,6,, + St[(- l )m+nS(q,  r ,  m, n ) 6 , ~  

In particular, the overlap between two Tx-type states is 

- (-I)" '"S(p,  r ,  1, n)6,, - ( - l ) p + " S ( ~ ,  4,1, m)6rn1 (4.6) 

and between two E-type states is 

(E(k m, n)lE(p, 4 ,  r ) )  = 4 6 , ' & ? A ?  + St[(-l)m+rS(q, r ,  m, w,1 
+ ( - l ) ' + r S ( p ,  r ,  1, n)a,, + ( - ~ ) ' + " S ( P ,  q,1, m)6rn] (4.7) 

where bpi is the Kronecker delta function and S,  = exp( -2) is the overlap between the 
ground states in any two wells. After the required overlaps have been evaluated, it can 
be shown that the normalisation factors satisfy the relationship 

1 = 4aiNi(l ,  m, n)2(1 - iStZi(l, m, n ) )  (4.8) 

where 

ai = 1 Zj(17 m, m)  = Q T ( 1 ,  m, m)  for i  = 1 to 3 

a ,  = 2 Zi(l ,  m, n )  = Q T ( 1 ,  m ,  n)  +- P(m, n)  
4 to 6 

i 7  to 9 
for i  = 

ai = 6 Z,(l ,  m, m> = QA(1,  m, m) - P(1, m)  for i  = 10,ll 

12,14 

{13 ,15  
a, = 12 Zi(Z, m,  n)  = QA(1, m, n)  +- d P E ( 1 ,  m, n )  for i  = 

ai = 6 Zi(l ,  m,  n)  = Q A ( l ,  m, n)  T PA(l ,  m, n)  
16 

for i  = 

a, = 1 

a, = 3 
with 

Z,(m, m, m)  = 3Q(m, m) 

Z,(m, m,  n)  = Q,(m, m. n )  + 2P(m, n )  

for i  = 18 

for i  = 19 

P(m, n)  = ( - l )m+nF(m, n)F(n,  m) 

Q(m, n )  = ( - l )m fnF(m,  m)F(n, n )  

PE(& m,  n)  = 2P(1, m)  - P(m, n> - P(n, 1) 

PA(1, m, n )  = P(1, m) + P(m, n )  + P(n,  2) 

Q T ( ~ ,  m, 4 = -Q(l ,  m> - Q(1,  n )  + Q<m3 n)  

Q A ( ~ ,  m ,  r z )  = Q(l ,  m)  + Q(m, n )  -+ Q(n,  I ) .  

(4.10) 
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4.2.  States in trigonal coordinates 

In order to write down symmetry-adapted states using the trigonal form of states, it is 
necessary to evaluate factors of the form R 1 Z@)‘; 4i5T6;). The orbital contribution to 
these factors can be evaluated in a similar manner to before, using the relationship (2.9) 
between Z@) and x, y and z .  However, the vibrational contributions are more difficult 
to evaluate, as the effects of the R on the trigonal excitations 4k, 5, and 6k are not obvious. 

The state I4;5?6$) can be written in termsof tetragonal excitationsusing therelation- 
ship 

and substituting for bkk)+ etc in terms of b i  , b l  and bh+. Thus 

I ( okk) 4) a ( okk) 5 )  (a  tk)6) ‘) 
( r  - s)!(x - y)!(l- r)!(m - t ) ! (n  - x)! 

X 

(4.11) 

(4.12) 

wherea = s + t + y, b = r - s +  m - t + x  - y andc  = 1 - r + n - x. It is then easy to 
see that, for example, 

6JC$1)(4i5:6!) = (4i576:) (4.13) 

In fact, it can be shown that the phonon parts of all of the states have the same 
transformation properties as the corresponding orbital states, for all of the operations 
R.  No factor ( -l)m-i.n appears, unlike in the case with tetragonal coordinates. The cubic 
states in trigonal coordinates are thus identical to the q,(l, m, n )  in table 2, but with the 
definitions of (Tx), ITy), ITz) and IE) changed to 

ITx(l, m, n)) = IC’; 41,576:) + Id’; 42576;) - la’; 4:5:6:) - lb’; 4b5r6g) 

lTy(l, m, n)) = lb’; 4‘,5r6g) + Id’; 425762) - IC’; 4‘,5:6:) - la‘; 4‘,5762) 

lTz(l, m, n)) = la’; 4‘,5:62) + Id’; 4i.5762) - Ib’;4b5r6;) - IC’; 4$:6:) 

and 

/ E ( l ,  m, n ) )  = la’; 4:5:6,“) + lb‘; 4b5r6g) + IC’; 4i.576:) + Id’; 425762). (4.14) 

To evaluate the normalisation factors for these states, it is necessary to calculate the 
overlaps between different pairs of states. As the states associated with two wells i and 
j are expressed in terms of different axes, such calculations are very complex. It is either 
necessary to write both states in terms of (common) tetragonal axes (using (4.12)), or 
write the state i in terms of the axes for well j .  With both approaches, the results involve 
sums over many indices, which can not be separated into independent sums analagous 
to (4.5). Hence no such results are presented here. However, if anisotropy is desired in 
the final results it is necessary to perform such calculations. 

5. Energies of the cubic states in tetragonal coordinates 

The energies of the cubic states qf can be calculated by evaluating the matrix elements 
of X between, for example, the states lTx(l, m, n ) )  and lTx(p, q ,  r)). To do this, it is 



Symmetry-adapted T 8 t Jahn-Teller states 7871 

useful to rewrite X in terms of the second-quantised operators b: and bi, such that 

Contributions to the required matrix elements of the form 

(Xkk) ' ;  4'5"6" IXIXg) ' ;  4P546') 

= (Xhk);  4'5"6"IUkf 'XUj lXg) ;  4P.546') 

can then be evaluated using the commutation relation 

x + c. Cp{-2K, z i  + hw,[-(b: + bi) + cp]} 
i=4,5,6 

(5.3) 
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where 

m, for i  = 1 to 3 

4 to 6 

to 9 
for i  = 

.R(I, m, m) - C(m, I ,  m)  for i  = 10,11 

12,14 

{13,15 
fori = 

for i  = 18 

for i  = 19 

with 

A(1, m) = (-l)'+"(X(m, I)F(I, m) + X(I ,  m)F(m, I ) )  

B(I, m) = ( - l )""(X(m,  m)F(I, 1) + X ( I ,  I)F(m, m ) )  

R(I, m, n)  = B(1, m) + B(1, n)  -t B(m, n)  

T(1, m. n)  = -B(Z, m) - B(I, n )  + B(m, n)  

U(6, m, n)  = -4F(I, I)[(-l)'+"VmF(m, m - l)6m(n+ll 

W(I,  m, n)  = 4[(- l )""~mF(I ,  m - l)F(m, l)6m(,,+ll 

+ (-l) '+"VnF(n, n - 1)6n(m+1)] 

+ (-l) '+,,VnF(l,  n - l)F(n,  z)6n(m+1)] 

WA(l ,m,  n> = W(I,  m, n)  + W(m,  IZ, l) + W ( n ,  1, m) 

C( l ,  m, n)  = A(m, n)  - U(1, m,  n)  
CA(I,  m, n)  = C(I ,  m, n)  + C(m, n ,  I )  + C(n, I ,  m) 

CE(n ,  1, m) = 2C(n, 1, m) - C(1, m, n)  - C(m, n ,  0. 

(5.9) 

(5.10) 

Values for the energies of the cubic excited states can be calculated numerically by direct 
substitution into the above expressions. The results are shown in figure 1 for N up to 2 
and K, /Ao ,  = 0 to 2.0. A discussion of these results is given at the end of the following 
section. 

5.1. Weak coupling results 

In the previous sections, states appropriate to infinite coupling have been used to derive 
symmetry-adapted states which are good eigenstates in finite coupling. The results are 
expected to be valid for strong couplings, where the idea of four distinct potential wells 
still applies, but to be less accurate in weak coupling, where the energies of the states 
rapidly exceeds the height of the barrier separating the wells. 



Symmetry-udupted T @ t Jahn-Teller states 7873 

In the weak coupling limit, the states of all triplet JT systems should be a product of 
orbital states and harmonic oscillator states of frequency oT centred on the origin in 
Q-space. They thus have relative separations of hoT. Figure 1 shows that the majority 
of the cubic states are separated by hwT in this limit. Unfortunately, a few of the states 
have fractional h ~ ~ e n e r g y  separations. Also, the number of states which have Nphonon 
excitations in weak coupling is larger than required for all N 2 1. For example, there 
are 10 states with 1 phonon excitation, rather than the correct number of 9. 

Numerical plots of the lowest energy levels of T ‘8 t JT systems (Caner and Englman 
1966) show that many N-phonon strong-coupling states tend to ( N  + 1)-phonon states 
in weak coupling. This leads us to suspect that all of the N-phonon states with relative 
energies which are non-integral values of in weak coupling, and some of the states 
with NhoT limits should attain the ( N  + l )hoT  limit. 

The states whose energies are non-integer values of fiuT in weak coupling are the 
T-states with either 1 even and m, n odd or with 1 odd and m, n even, and the E and A 
states with 1, m and n all odd or all even. Their energies tend to limits which differ from 
that of the ground state by 

hwT[N + 1/(1 + flv)] N = l + m + n  (5.11) 

which is only an integer unit of hoTfor the casesN = 0 (i.e. the TI and A2 ground states). 
It is instructive to derive the form of the states with non-integral AmT weak coupling 

limits in order to determine the cause of their anomalous behaviour. It can easily be seen 
that the orbital contribution to all of these states is la’ + b’ + c’ + d’). Now to a first 
approximation, la’) = Ua/a)-+ a etc in weak coupling, and so /a’ + b’ + c’ + d’)+ 
1 a + b + c + d) = IO). The limiting states must therefore be formed by taking the second 
order terms in the expansions of the exponential factors in the U,. For example, 

IT-41, m, nN-+ H[ITx(K‘4, m, n) )  - ITx(l, K ? ,  n ) )  - /Tx(l, m, K Z ) ) ]  (5.12) 

3 

P 
rr \ x 

C W 

2 5  

2 0  

1 5  

1 0  

K T / ~  w T 

Figure 1. Energies of the states qj(I, m, n )  as a function of K,/hw, for N (= I + m + 
1 and 2, relative to the TI ground state. 

n) = 0,  
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where K f ,  = [dl4'- '  - d(Z + 1)4'+'] etc. Thus a strong-coupling state with N-phonon 
excitations tends to alinear combination of states with both ( N  - 1) and ( N  + 1) phonons 
in weak coupling, rather than the proposed limit of (N  + 1)-phonon states only. New 
states which consist of ( N  + 1)-phonon states can be constructed by orthogonalising the 
original states to the relevant ( N  - 1)-phonon states. It is found that the energies of 
these new states attain ( N  + l)fiwT limits in weak coupling. The results of one set of such 
calculations using Gram-Schmidt procedures are given in Appendix 2. The energies of 
the new states are plotted in figure 2 for N = 0 to 2.0. 

The origin of the incorrect limiting values of the remaining anomalous states is 
illustrated by the following example. The limiting form of the new strong coupling state 
q1(l, 0,O) in weak coupling is vi(l,O, 0 ) -  (d2v1(2 ,  0,O) - q4(l, 1,O)). However, 
the two states v , (2 ,0 ,0)  and q 4 ( l ,  1 , O )  are already defined in this limit, and are 
consequently over-specified. The problem could be removed by taking the state 
(d2vl(2, 0,O) - v4(1,  1 , O )  and its orthogonal partner, and constructing a new state 
orthogonal to these and the N = 1 phonon states, using similar techniques to those used 
to construct qi(l,O, 0). The new state would then have two excitations in strong 
coupling and three in weak coupling. However, this procedure is complicated so will not 
be attempted here. It can, however, be shown that all of the over-counting problems 
arise due to these over-specifications. 

6. Discussion 

Although the symmetry-adapted states for T €3 t JT systems were well known for the 
ground states, this is the first time, to the authors knowledge, that such states have been 

I I I I I I I I 

3 0  

2 5  

5 2 0  
bc 
k m 

5 1 5  

1 0  

- 0 5 -  

I I I I I 

0 2 5  0 50 0 75 1.00 1 25 1.50 1 7 5  2 00 
K , / h w ,  

Figure 2. Energies of the states vL(I, m, n )  partially corrected for weak coupling as a function 
of K,/hw, for N (= 1 + m + n)  = 0 , l  and 2, relative to the TI ground state. 
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constructed for all excited states using analytical methods. Previously, the lowest energy 
levels have been calculated numerically starting from a weak coupling basis by Caner 
and Englman (1966) and Sakamoto and Muramatsu (1978), and for stronger couplings 
by Sakamoto (1984). Both analytical and numerical calculations produce identical 
orderings of the energy levels, with a very similar energy level pattern for most of the 
states in moderate coupling. However, for reasons given earlier, some of our states do 
not tend to the correct value of Nfio ,  in weak coupling. They also do not attain the 
correct anisotropic frequencies in infinite coupling. A comparison between the lowest 
levels corrected for anisotropy and the results of Caner and Englman (1966) was given 
in Dunn and Bates (1989). (Note that Caner and Englman label their states for a T, ion.) 
A comparison between the lowest-energy cubic states and the analytical results of Shultz 
and Silbey (1974) was also given in this paper. 

Figures 1 and 2 show that the effect of the weak coupling corrections is only measur- 
able for KT/fiwT < 1.75 (i.e. E ~ T / ~ o J T  < 4). However, it is less clear over what range of 
coupling strengths the results themselves can be considered to be reliable. For example, 
it is not clear how much of the oscillatory behaviour of the state qj19(l, 1 , O )  is real, and 
how much an artefact of the calculation. However, it is certain that many of the states 
will have energies that are considerable deviations from integer units of fioT in moderate 
coupling. It can also be seen from figure 1 that the states qj4(0, 1,O) and qjlo(l, 0,O) have 
an accidental degeneracy, which does not appear in the numerical calculations. 

The figure also shows that states of like symmetries cross without interacting. This is 
because the states of like symmetry are not orthogonal to each other, although they are 
orthogonal to all states of other symmetries. Although the states could be orthogonalised 
to remove these crossings, this was not considered worthwhile as the effect can be 
expected to be small. 

The aim of this paper was to produce analytical expressions for the excited states of 
T (23 t JT systems which can be used as a basis for further calculations. The energies of 
the states are not intended to rival those of existing numerical calculations. Although 
the problems that occur in the very strong and very weak coupling limits could be 
corrected, the results would be very complex, and the advantages gained by having 
analytical results would be lost. This is especially true as the corrections will often be of 
minimal importance in such calculations. 

One example of the use of the symmetry-adated states is in the calculation of second- 
order JT reduction factors. In Bates and Dunn (1989), these factors were calculated 
analytically using the simple states associated with the wells for the excited states. As 
these states are not orthogonal, this will tend to over-estimate the values of the reduction 
factors. Although the new states are still not full orthogonalised, they represent a better 
orthogonal set than the original states, so it can be expected to yield betier results for 
the reduction factors. Calculations of the second-order reduction factors using the 
symmetry-adapted states will be presented shortly. 
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Appendix 1. Calculation of numbers of states 

It is not obvious that the ranges of the indices I ,  m and n specified in table 2 are those 
which define each state once and once only. In this section, group theory is used to 
calculate the number of states of each symmetry which should occur for a given number 
of phonon excitations N (= 1 + m + n).  These numbers are then shown to be identical 
to the corresponding numbers of states in table 2 allowed by the specified index ranges, 
hence verifying that the correct number of states has been specified. 

The phonon states 14'5"6") consists of Ndegenerate t2-type excitations. For the group- 
theoretical calculations, it is necessary to calculate the characters of the symmetric part 
of the product t2(N) = tZ  C3 t2 C3 t2.  . . (to Nfactors), for each of the operations Tof the 
cubic group Td (Heine 1960). If X( T )  is the character of tz for the operation T ,  then the 
character x("( T )  of the symmetric part of tz(N) may be deduced from the reduction 
formula (Heine 1960 pp 258-63) 

X("((T) = 4{2X(T)X"-"(T) + i[X(T2)  - ( X ( T ) ) * ] p Z ) ( T )  + X ( T N ) }  

where 

X q T )  = 4[(X(T>)' + X(T2)] .  (Al . l )  

This is less than the character (x ( T ) ) N  of the complete product t2(N). 
It can thus be deduced that the characters of the symmetric parts of the reducible 

representations are 

%("(E) = $(N + 1)(N + 2) 

x('V(~JC,) = +1 i: 
4(N + 2) 

X ( " ( ~ J C ~ )  = 

for N even 

for N odd 

for i ( N  - 1) integral 

for N/4 integral 

otherwise 

for N even 

for N odd 

for N/3 integral 

otherwise. 
(A1.2) 

The numbers of vibronic irreducible representation transforming as A,, A,, E, TI and 
T2 can then be derived by solving five linear simultaneous equations obtained using the 
Td character table. 

The above procedure gives the numbers of irreducible representations of the phonon 
states 14'5"6"), rather than of the vibronic states of the form [Orbit; 4'5"6"). However, 
the orbital parts of the states transforms as (A2 + T,). Hence multiplication of the 
phonon classifications by (A, + T,) will determine the number of vibronic states for 
each irreducible representation, which is equivalent to the numbers of states. The results 
are shown in table 3. 

It is necessary to verify that the number of states derived by the projection operator 
method is the same as the number of states predicted by group theory. This can be done 
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Table 3. The numbers of states of each symmetry with N-phonon excitations ( N  = 
1 + m + n) ,  for the two cases of N even and N odd. The rows (A) apply if N/3 is integral and 
the rows (B) otherwise. 

Symmetry N even N odd 

f i N 2  
&(Nz - 4) 

&(NZ + 6N + 12) 
* (N2  + 6N + 8) 

+N(N + 3 )  
B ( N + l ) ( N + 2 )  

$(N + 2)* 

$N(N + 2 )  

2 ( N + l ) ( N + 2 )  

A ( N z  + 3 )  
h ( N 2  - 1) 

&(N + 3)’ 
&(N2 + 6N + 5 )  

jN(N + 3 )  
$(N + 1) ( N  + 2) 

$(N + 1 )  ( N  + 3 )  

$(N + 1 ) 2  

2(N + 1 )  ( N  + 2 )  

by determining the number of ways of choosing I ,  m and n such that 1 + m + n = N ,  with 
the restrictions specified in the final column of table 2. It can easily be shown that such 
a calculation does indeed produce the required results. 

Appendix 2. Extension of strong-coupling states in tetragonal coordinates to weaker 
couplings 

In § 5.1, it was seen that the T-type cubic states with either 1 odd and m, n even or 1 even 
and m, n odd, and the A- and E-type states with I, m and n either all odd or all even 
become combinations of ( N  + 1)- and ( N  - 1)-phonon states in very weak coupling, and 
that their energies do not tend to the correct limits of integral units of no,. In this 
section, Gram-Schmidt procedures will be used to construct new states for these cases 
which consist purely of ( N  + 1)-phonon states in weak coupling, and have the desired 
energy dependence. 

For the Gram-Schmidt orthogonalisation procedures, the overlaps between the 
relevant ( N  + 1) and ( N  - 1)-phonon states must be evaluated, together with the appro- 
priate matrix elements of X. The results for one member of each of the triplet and 
doublet states and for all of the A-states are given in § A2.1 below. The corresponding 
results for the remaining triplet and doublet states follow directly. § 2.2 shows how these 
results can be used to obtain the new orthogonal states and their energies. 

A2.1. Overlaps and matrix elements 

The overlaps Sab and matrix elements (of %‘e) Mab between any two states la) and Ib) will 
be defined in terms of the function Tab and Lab respectively, by 

Sat, = (ai b) = N a N b  Tabs ,  and Mat, = (a I Xlb) = NaNbLabStfiWT 
where Na and Nb are the normalisation factors for states a and b respectively. The 
functions Tab and L a b  can be calculated directly from the expressions (4.3) and (5.2) 
respectively. It is found that the Tab have identical forms to the L a b  if the functional 
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substitutions H(1, c, d ,  a ,  b )  -+ S(c ,  d ,  a ,  b)  and J(1, c ,  d ,  a,  b)  - 0 are made. Hence, 
explicit expressions for the Lab only are given here. 

(i) i = 1. It is necessary to make the state qc = ql(l, m, m) orthogonal to the states 
ya = ql(l - 1, m, m)  and q b  = y4(1, m, m - 1). The required matrix elements are thus 
defined by 

Lab = 2(H(m, I ,  m - 1 , l -  1, m) - J(m, 1, m, 1 - 1, m) + J(1, m - 1, m, m, m ) )  

Lac = -2H(m, 1 - 1, m, 1,  m)  + J(1,  m ,  m,  m, m) 

and 

Lbc = 2(H(l ,  m - 1, m, m,  m) + H(m, 1, m - 1 ,1 ,  m) - J(m, I ,  m,  E ,  m ) )  (A2.1) 

(ii) i = 4 and 7. The state ?)d = VI(/, m, n )  need to be orthogonalised to Va = 
yl( l  - 1, m, n ) ,  qb = yL(l ,  m,  n - 1) and y, = yl(l ,  m - 1, n) .  The required functions 
are 

Lad = 2(-H(n, 1- 1, m, 1, m)  - H(m, 1 - 1, n ,  1, n )  

+ J(1, m, n ,  m,  n )  -t J(1, m, n ,  n ,  m ) )  

and 

Lab = Ll(1, n ,  m)  

Lbd = L2(l, n ,  m)  

La, = L1(1, m,  n)  

Lcd = L2(1, m, n)  

where 

L1(1, m, n)  = 2(H(n, 1, m - 1 , l -  1, m) + J(1,  m - 1. n ,  m, n )  

-J (m,  1,n, 1 - 1,n)  kJ(1,m - 1, n,  n ,  m ) )  

L2(1, m, n)  = 2(H(n, I ,  m- 1, I ,  m)  + H(1, m - 1, n ,  m, n )  

H(1, m - 1, YE, n,  m) - J(m, I ,  n ,  I ,  n ) )  (A2.2)  

(iii) i = 10. qc = ylo(l, m,  n)  needs to be orthogonalised to qa = Vlo(l - 1, m, m)  
and q b  = Vlz(m,  m - 1 , l ) .  Note that v12(m, m - 1 , l )  is only defined in table 1 for 
(m - 1) > 1, as it is identical to the state 

(-1)'+m(4?)12(1, m, m - 1) + 4q3VI5(1 ,  m, m - 1)). 

However, the distinction is only made to prevent over-counting. The state can be used 
for these calculations for all 1 and m. The required matrix elements are defined by 

Lab = 6(2H(m, 1, m - 1 , l -  1, m) - H(m, I ,  m - 1, m, 1 - 1) + W(1, m - 1, m, m,  m) 

-W(m,l,m,l-1,m)+J(m,l,m,m,l-1)) 

Lac = 6(2H(m, 1 - 1, m, 1,  m) .- H(m, I - 1, m, m, 1) - J ( l ,  m, m, m, m ) )  

Lbc = 6(-2H(m, I ,  m - I, I ,  m)  + H(m, I ,  m - I, m, I )  - 2H(1, m- 1, m, m,  m) 

+ U(m, 1, m, 1, m)  - J(m, I ,  m,  m, I)). (A2.3) 
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(iv) i = 12 and 13. The state q d  = qi(l, m,  n)  needs to be orthogonalised to va = 

The required matrix elements are obtained from 
vi(l - 1, m, n) ,  q h  = ~ ~ ( 1 ,  m - 1, n )  and qc = qi(l, m, n - 1). 

La, = 6(-2H(n, I ,  m - 1 , l -  1, m) - W(1, m - 1, n ,  m, n)  + W(m, I ,  n ,  I -  1, n)  

+_ (-2H(n, 1,m - 1,m, 1 - 1) + J(1, m - 1, n ,  n ,m)  

- J(m, 1,  n ,  n ,  I - 1)) 

Lcd = 6(-2H(1, m, n - 1, m, n)  - 2H(m, I ,  n - 1, I ,  n )  + W(n,  I ,  m ,  1,m) 

? (H( l ,m,n  - l , n , m )  + H(m, l ,n  - l , n , l )  

+ W(n,  1, m, m,  4 )  
and 

Lac = Ll(n, I ,  m )  Lbc = Ll(n, m, 1) 

Lad = L2(n, I ,  m )  Lhd = L2(n, m, 1) 

where 

Ll(n, I ,  m) = 6(2H(m, 1, n - 1, I - 1, n)  + 2 J ( l ,  m ,  n -1, m, n)  - W(n,  I ,  m,  1-1, m) 

+- (-H(m, 1, n - 1, n ,  I - 1) - J ( l ,  m ,  n - 1, n ,  m) - W(n,  1, m, m,  1 - 1)) 

and 

L2(n, I ,  m)  = 6(2H(m, I - 1, n ,  1, n )  + 2H(n, I - 1, m, 1,  m)  - W(1, m,  n ,  m,  n)  

+_ ( -H(m,  1 - 1, n,  n ,  1) + 2H(n, I - 1,m, m, 1) + J(1, m ,  n ,  n ,  m)) ) .  

(A2.4) 

(v) z = 16. No corrections necessary. 
(vi) i = 17. v d  = v17(l, m, n)  is orthogonalised to qa = vI7(l - 1, m, n) ,  q h  = 

v17(l, m,  n - 1) and vc = v19(1, m - 1, n).  The matrix elements are 

La, = Ll(m, 1, n)  Lac = -Ll(n, I ,  m) Lhc = Ll(1, m, n)  

Lad = L2(1, m ,  n)  Lhd = -L2(n, 1, m )  L,d = L2(m, 1, n)  
where 

Ll(1, m, n )  = 6(H(l, m, n - 1, m - 1, n)  + H(1, m, n - 1, n ,  m - 1) 

+ J(m, 1,n - l , I , n )  + J(m, I,n - 1, n, l )  

- . l(n,l ,m,I,m - 1) - J(n , l ,m,m - 1,l))  

L2(1, m, n )  = 6(H(m,  1 - 1, n ,  I, n )  + H(m, 1 - 1, n,  n ,  I )  

+ H ( n , l -  l , m , l , m )  + H ( n , l -  l , m , m , l )  

- J(1, m ,  n ,  m,  n)  - J(1, m, n ,  n ,  m, m)) .  (A2.5) 
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(vii) i = 18. v b  = Vls(m, m, m) is orthogonalised to va = vIy(m, m, m - 1). The 

(A2.6) 

(viii) i = 19. vC = qly(m, m, n )  is orthogonalised to Va = Vly(m, m, n - 1) and V b  = 
vI7(n, m, m - 1) if n > m or -VI,(m, m - 1, n)  if m > n. The matrix elements are 
defined by 

Lac = 3(2H(m, n - 1, m, n ,  m) + 2H(m, m, n - 1, n,  m) 

matrix element these states is defined by 

L a b  = 3(2H(m, m - 1, m, m, m) - J(m, m, m, m)) .  

- J(n ,  m, m,  m, 4) 
L b c  = -6(H(n, m - 1, m, m, m) + H(m, m - 1, n, m, n)  

+ H(m, m - 1, n ,  n ,  m)  - J(m, n,  m,  n ,  m) 

- J(m, m, n ,  n ,m)> 

L a b  = -6(H(m,m- l , n , m , n  - 1) +H(m,m - l , n , n , m )  

- J (n ,m  - l , m , m , m )  + J(m,m,n ,m,n  - 1) 

+ J(m, m,  n ,  n - 1, m)).  (A2.7) 

A2.2. Gram-Schmidtprocedures 

An orthonormal set of basis states can always be constructed from a non-orthogonal one 
using a Gram-Schmidt orthogonalisation procedure. Results are given below for one 
such procedure on the four states I Va), I V b ) ,  I 3,) and I v d ) .  Results for a system with two 
or three states only follows directly by neglecting the redundant formula. 

In the notation of the previous section, an othonormal basis set is 

I V a )  

1 vb> = N L (  1 v h )  - Sab 1 3,)) 
l v L ) = N ; ( l ~ c )  - S a c I V a )  - s L c l ~ L > )  

= N i ( / q d )  - S a d l V a )  - s L d I v L )  - Sfd IvS)) (A2.8) 

where 

Nb2 = (1 - sj)- '  sic = N ; ( S b c  - S a b S a c )  

NA2 = (1 - Sic - S h , )  I 2  -1 SLd = NL(Sbd - SahSad)  (A2.9) 

NA2 = (1 - S i d  - SL: - SAi)-' SAd = N L  (Sed - $acSad - SLcSLd)* 

The quantities DA(1, m, n)  must be added to the energies Ed(Z, m, n) ,  where 

DA(1, m, n)  = N h 2 ( ( S i d  + + S;.)Ed + S i d E a  

+ SLiEL + S;,!EL - 2 ( S a d M a d  f S L d M L d  + S S d M L d )  

+ 2 ( S a d S L d M A b  + SadSLdMAc + SLdS;dM!c)) (A2.10) 
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(A2.11) 
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